Symmetry properties of s-classified $\operatorname{SU}(3) 3 \mathrm{j}$-, 6 j - and 9 j -symbols

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 1929
(http://iopscience.iop.org/0305-4470/19/1/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:56

Please note that terms and conditions apply.

Symmetry properties of s-classified $\operatorname{SU}(\mathbf{3}) \mathbf{3 j}$-, $\mathbf{6 j}$ - and 9j-symbols

Z Pluhař \dagger, L J Weigert \ddagger and \mathbf{P} Holan \dagger
+ Department of Nuclear Physics, Charles University, CS-180 00 Prague 8, Czechoslovakia \ddagger Institut für Theoretische Physik, Technische Universität Braunschweig, D-3300 Braunschweig, West Germany

Received 25 May 1984, in final form 20 May 1985

Abstract

Starting from the s-classified $\operatorname{SU}(3)$ Clebsch-Gordan coefficients introduced previously, the s-classified $\operatorname{SU}(3) 3 j$-, $6 j$ - and $9 j$-symbols are constructed and examined. They satisfy simple symmetry relations similar to those valid for the $\mathrm{SU}(2)$ case.

1. Introduction

In a previous paper the s-classified $\mathrm{SU}(3)$ Clebsch-Gordan coefficients have been introduced (Pluhař et al 1986, hereafter referred to as I). The reduced states obtained by their use are classified by eigenvalues s of an appropriate labelling operator constructed from representation generators. The coefficients satisfy simple symmetry relations analogous to those of their $\mathrm{SU}(2)$ counterparts.

In this paper the corresponding s-classified $\mathrm{SU}(3) 3 j$-, $6 j$ - and $9 j$-symbols are briefly examined. Their properties follow the general pattern established for an arbitrary group by Derome, Sharp and Butler (Derome and Sharp 1965, Derome 1966, Butler 1975). However, the symmetries of the s-classified Clebsch-Gordan coefficients allow important simplifications of the general formulae for the present case. This applies in particular to the symmetry relations between the s-classified $3 n j$-symbols examined, which turn out to be simpler than those of the $3 n j$-symbols in current use (cf Draayer and Akiyama 1973, Millener 1978).

2. Conventions and notation

The conventions introduced in I will be followed. The irreducible representations (IRs) of SU(3) will be specified by their highest weights ($a b$); the canonical basis states of the IRS will be specified by their hypercharge y, isospin i and isospin projection i_{z}. The notation will be simplified by employing the abbreviations

$$
\begin{array}{ll}
j=(a b) & m=\left(y i i_{z}\right) \\
\bar{j}=(b a) \quad \bar{m}=\left(-y i-i_{z}\right) \quad \bar{s}=-s \tag{2.1}\\
(-1)^{j}=(-1)^{a+b} & (-1)^{m}=(-1)^{\frac{3}{2} y+i_{2}} .
\end{array}
$$

The quantum numbers \bar{j}, \bar{m} and \bar{s} will be referred to as conjugates of j, m and s, respectively. The particular j and m numbers referring to the one-dimensional IR will
be designated by the symbol 0 . The dimension of the IR of highest weight (Hw) j will be denoted by $|j|$. The eigenvalues of the Casimir operators of order p for the IR of Hw j will be denoted by $f_{p}(j), p=2,3$ (see I (2.3) and (2.4)).

In the new notation, the basic symmetry relations of the s-classified $\mathrm{SU}(3)$ ClebschGordan coefficients (cGcs) take the form (see I (5.3)):

$$
\begin{align*}
\left(j_{1} m_{1} j_{2} m_{2} \mid \bar{j}_{3} \bar{m}_{3} s\right) & =\left(j_{2} m_{2} j_{1} m_{1} \mid \bar{j}_{3} \bar{m}_{3} \bar{s}\right)(-1)^{j_{1}+j_{2}+j_{3}} \\
& =\left(j_{1} m_{1} j_{3} m_{3} \mid \bar{j}_{2} \bar{m}_{2} \bar{s}\right)(-1)^{j_{1}+m_{1}}\left(\left|j_{2}\right| /\left|j_{3}\right|\right)^{1 / 2} \\
& =\left(\bar{j}_{1} \bar{m}_{1} \bar{j}_{2} \bar{m}_{2} \mid j_{3} m_{3} \bar{s}\right)(-1)^{j_{1}+j_{2}+j_{3}} \tag{2.2}
\end{align*}
$$

and the expression for the cGcs with $j_{3}=0$ (and, necessarily, $j_{2}=\bar{j}_{1}, m_{3}=0$ and $s=2 f_{3}\left(j_{1}\right)$) becomes (see I (4.8))

$$
\begin{equation*}
\left(j_{1} m_{1} j_{2} m_{2} \mid 00 s\right)=\delta_{m_{1} \dot{m}_{2}} \frac{(-1)^{j_{1}+m_{1}}}{\sqrt{ }\left|j_{1}\right|} \tag{2.3}
\end{equation*}
$$

All s-classified $\mathrm{SU}(3)$ cGCs and $3 n j$-symbols are real.
The quantum number quadruple $\left(j_{1} j_{2} j_{3} s\right)$ will be said to be admissible if, by reducing the product of IRS of hws j_{1} and j_{2}, the reduced states of нw \bar{j}_{3} and of label s can be constructed. From the discussion in I, §5, it follows that the quadruples remain admissible for even permutations of the j arguments, for odd permutations of the j arguments accompanied by the conjugation of the s argument, and for conjugation of all arguments. (The papers by Derome and Sharp (1965) and Butler (1975) will be referred to as DS and B, respectively.)

3. The s-classified $\operatorname{SU}(3) \mathbf{3 j}$-symbols

Assuming ($j_{1} j_{2} j_{3} s$) to be admissible quadruples, we define the s-classified $3 j$-symbols by (cf DS (2.1) and в (5.1))

$$
\left(\begin{array}{cccc}
j_{1} & j_{2} & j_{3} & s \tag{3.1}\\
m_{1} & m_{2} & m_{3} &
\end{array}\right)=\left(j_{1} m_{1} j_{2} m_{2} \mid \bar{j}_{3} \bar{m}_{3} s\right) \frac{(-1)^{\overline{3}_{3}+\bar{m}_{3}}}{\sqrt{ }\left|\bar{j}_{3}\right|}
$$

As a result of the cGC symmetries (2.2), the s-classified $3 j$-symbols satisfy the symmetry relations:

$$
\begin{align*}
& \left(\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s \\
m_{1} & m_{2} & m_{3} &
\end{array}\right) \\
& =\left(\begin{array}{cccc}
j_{2} & j_{1} & j_{3} & \bar{s} \\
m_{2} & m_{1} & m_{3} &
\end{array}\right)(-1)^{j_{1}+j_{2}+j_{3}} \\
& =\left(\begin{array}{llll}
j_{1} & j_{3} & j_{2} & \bar{s} \\
m_{1} & m_{3} & m_{2} &
\end{array}\right)(-1)^{j_{1}+j_{2}+j_{3}} \\
& =\left(\begin{array}{cccc}
\bar{j}_{1} & \bar{j}_{2} & \bar{j}_{3} & \bar{s} \\
\bar{m}_{1} & \bar{m}_{2} & \bar{m}_{3} &
\end{array}\right)(-1)^{j_{1}+j_{2}+j_{3}} . \tag{3.2}
\end{align*}
$$

Thus, differently from what happens in the SU(3) theory discussed in Derome (1967) and Butler (1975), the s-classified $3 j$-symbols linked by the basic symmetry relations
of transposition and conjugation are those referring just to opposite multiplicity labels, the s-classified $3 j$ transposition and conjugation matrices being (cf DS (2.8) and (4.1))

$$
M(12,3)_{s}^{s^{\prime}}=M(1,23)_{s^{\prime}}^{s^{\prime}}=\delta_{s s^{\prime}}(-1)^{j_{1}+j_{2}+j_{3}} \quad A(123)_{s s^{\prime}}=\delta_{s s^{\prime}}
$$

The s-classified $3 j$-symbols are invariant for even permutations of the $j m$ columns. For odd permutations of the columns accompanied by the conjugation of the s argument, they are multiplied by $(-1)^{\sigma}$, where $\sigma=j_{1}+j_{2}+j_{3}$; the conjugation of all arguments also leads to the factor $(-1)^{\sigma}$. When multiplied by $\sqrt{ }\left|j_{3}\right|$, the $3 j$-symbols of fixed j_{1} and j_{2} form an orthonormal matrix with the matrix indices ($m_{1} m_{2}$) and ($j_{3} m_{3} s$). As indicated by (3.1), the s-classified $\mathrm{SU}(3) 1 \mathrm{j}$-symbol is (see ds (3.1) or $\mathrm{B}(5.10$))

$$
\begin{equation*}
\binom{j}{m m^{\prime}}=\delta_{m \bar{m}^{\prime}}(-1)^{j+m} . \tag{3.3}
\end{equation*}
$$

4. The s-classified $\mathbf{S U (3)} \mathbf{6 j}$-symbols

Assuming the quadruples $\left(j_{1} j_{2} j_{3} s_{1}\right),\left(\bar{j}_{1} j_{5} \bar{j}_{6} s_{2}\right),\left(\bar{j}_{4} \bar{j}_{2} j_{6} s_{3}\right)$ and $\left(j_{4} \bar{j}_{5} \bar{j}_{3} s_{4}\right)$ to be admissible, we introduce the s-classified $6 j$-symbols by the definition (cf ds (5.1) and в (9.6))

$$
\begin{align*}
\left\{\begin{array}{llll}
\left.\begin{array}{llll}
j_{1} & j_{2} & j_{3} & \\
j_{4} & j_{5} & j_{6} & \\
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right\} \\
= & \sum_{\text {ail }}(-1)^{\Sigma_{i=1}^{6}\left(j_{1}+m_{2}\right)}\left(\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \\
m_{1} & m_{2} & m_{3} &
\end{array}\right)\left(\begin{array}{llll}
\bar{j}_{1} & j_{5} & \overline{j_{6}} & s_{2} \\
\bar{m}_{1} & m_{5} & \bar{m}_{6}
\end{array}\right) \\
& \times\left(\begin{array}{llll}
\overline{j_{4}} & \overline{j_{2}} & j_{6} & s_{3} \\
\bar{m}_{4} & \bar{m}_{2} & m_{6}
\end{array}\right)\left(\begin{array}{llll}
j_{4} & \overline{j_{5}} & \overline{j_{3}} & s_{4} \\
m_{4} & \bar{m}_{5} & \bar{m}_{3}
\end{array}\right) .
\end{array}\right.
\end{align*}
$$

As a consequence of the $3 j$ symmetries, the s-classified $6 j$-symbols are invariant for the rearrangements of the j arguments known from the $\mathrm{SU}(2)$ case. In our case, however, each rearrangement has to be accompanied by an additional transformation in order to make all four quadruples of the new symbol admissible. The transformation consists of conjugating some of the arguments and of permutating the s arguments; whereas the permutation is uniquely specified by the rearrangement, the conjugation can be performed in two ways: either all s arguments are conjugated or none. The total number of the symmetry related $6 j$-symbols of the same value is thus 48 . As the basic symmetry relations one can use those given by (cf DS, theorems 1 and 2 , and B (9.7)-(9.9))

$$
\left.\begin{array}{rl}
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6} \\
s_{1} & s_{2} & s_{3}
\end{array} s_{4}\right.
\end{array}\right\}=\left\{\begin{array}{llll}
\overline{j_{2}} & \overline{j_{1}} & \overline{j_{3}} & \\
j_{5} & j_{4} & \bar{j}_{6} & \tag{4.2}\\
s_{1} & s_{3} & s_{2} & s_{4}
\end{array}\right\}=\left\{\begin{array}{llll}
\overline{j_{1}} & \overline{j_{3}} & \overline{j_{2}} & \\
\overline{j_{4}} & j_{6} & j_{5} & \\
s_{1} & s_{2} & s_{4} & s_{3}
\end{array}\right\} .
$$

Proceeding as in the $\mathrm{SU}(2)$ case one finds that the $6 j$-symbols fulfil the orthogonality relations and the sum rules expressed by (cf DS, theorems 4 and 5, and B (9.10)
and (9.11))
$\left.\sum_{j_{6} s_{2} s_{3}}\left|j_{6}\right|\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6} \\ s_{1} & s_{2} & s_{3}\end{array} s_{4}\right\}\right\}\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3}^{\prime} \\ j_{4} & j_{5} & j_{6} \\ s_{1}^{\prime} & s_{2} & s_{3}\end{array} s_{4}^{\prime}\right\}=\left.\delta_{j_{33} 3_{3}^{\prime}} \delta_{s_{1} s_{1}} \delta_{s_{4} s_{4} \mid} j_{3}\right|^{-1}$
$\sum_{j s s^{\prime}}(-1)^{j+j_{3}+j_{6}}|j|\left\{\begin{array}{ccc}j_{1} & j_{4} & j \\ \bar{j}_{5} & \bar{j}_{2} & j_{3} \\ s & \bar{s}_{1} & s_{4}\end{array} \bar{s}^{\prime}\right\}\left\{\begin{array}{ccc}j_{1} & j_{4} & j \\ j_{2} & j_{5} & j_{6} \\ s & s_{2} & \bar{s}_{3}\end{array} s^{\prime}\right\}=\left\{\begin{array}{llll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6} \\ s_{1} & s_{2} & s_{3} & s_{4}\end{array}\right\}$.
Whenever one of the j arguments vanishes, the $6 j$-symbol reduces to a simple algebraic expression; if, for example, $j_{6}=0$ (and, necessarily, $j_{5}=j_{1}, j_{4}=\bar{j}_{2}, s_{1}=s_{4}$, $s_{2}=2 f_{3}\left(\bar{j}_{1}\right)$ and $\left.s_{3}=2 f_{3}\left(j_{2}\right)\right)$, then

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{4.3}\\
j_{4} & j_{5} & 0 \\
s_{1} & s_{2} & s_{3}
\end{array} s_{4}\right\}=\frac{(-1)^{j_{1}+j_{2}+j_{3}}}{\left(\left|j_{1} \| j_{2}\right|\right)^{1 / 2}}
$$

Up to a factor, the s-classified $\mathrm{SU}(3) 6 j$-symbols are identical with the recoupling coefficients linking different s-classified reduced states of products of three $\mathrm{SU}(3)$ Irs; explicitly (cf в (9.13))
$\left\langle\left(\left(j_{1} j_{2}\right) j_{12} j_{3}\right) j m s_{12} s \mid\left(j_{1}\left(j_{2} j_{3}\right) j_{23}\right) j m s_{23} s^{\prime}\right\rangle$

$$
=(-1)^{j, j_{2}+j_{3}+j}\left(\left|j_{12} \| j_{23}\right|\right)^{1 / 2}\left\{\begin{array}{cccc}
j_{1} & j_{2} & \overline{j_{12}} & \tag{4.4}\\
j_{3} & j & j_{23} & \\
s_{12} & s^{\prime} & s_{23} & s
\end{array}\right\} .
$$

5. The s-classified $\operatorname{SU}(\mathbf{3}) 9 \mathbf{j}$-symbols

Assuming all quadruples in (the first three) columns and rows to be admissible, we define the s-classified $9 j$-symbols by (see Ds, p 1590 and в (10.2))

$$
\begin{align*}
& \left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \\
j_{4} & j_{5} & j_{6} & s_{2} \\
j_{7} & j_{8} & j_{9} & s_{3} \\
s_{4} & s_{5} & s_{6} &
\end{array}\right\} \\
& =\sum_{\text {all } m}\left(\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \\
m_{1} & m_{2} & m_{3} &
\end{array}\right)\left(\begin{array}{cccc}
j_{4} & j_{5} & j_{6} & s_{2} \\
m_{4} & m_{5} & m_{6} &
\end{array}\right)\left(\begin{array}{llll}
j_{7} & j_{8} & j_{9} & s_{3} \\
m_{7} & m_{8} & m_{9} &
\end{array}\right) \\
& \times\left(\begin{array}{llll}
j_{1} & j_{4} & j_{7} & s_{4} \\
m_{1} & m_{4} & m_{7} &
\end{array}\right)\left(\begin{array}{cccc}
j_{2} & j_{5} & j_{8} & s_{5} \\
m_{2} & m_{5} & m_{8} &
\end{array}\right)\left(\begin{array}{cccc}
j_{3} & j_{6} & j_{9} & s_{6} \\
m_{3} & m_{6} & m_{9} &
\end{array}\right) . \tag{5.1}
\end{align*}
$$

As a consequence of the $3 j$ symmetries, the s-classified $9 j$-symbols are invariant for even permutations of the first three columns or rows, for reflection in the main diagonal, and for conjugation of all arguments. For odd permutations of the first three columns (rows) accompanied by the conjugation of the last one they are multiplied by $(-1)^{\sigma}$, where σ is the sum of all j arguments. The total number of the symmetry
related $9 j$-symbols of the same magnitude is 144 . In particular,

$$
\begin{align*}
\left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \\
j_{4} & j_{5} & j_{6} & s_{2} \\
j_{7} & j_{8} & j_{9} & s_{3} \\
s_{4} & s_{5} & s_{6}
\end{array}\right\} & =\left\{\begin{array}{llll}
j_{2} & j_{1} & j_{3} & \bar{s}_{1} \\
j_{5} & j_{4} & j_{6} & \bar{s}_{2} \\
j_{8} & j_{7} & j_{9} & \overline{s_{3}} \\
s_{5} & s_{4} & s_{6}
\end{array}\right\}(-1)^{\sigma}=\left\{\begin{array}{llll}
j_{1} & j_{3} & j_{2} & \overline{s_{1}} \\
j_{4} & j_{6} & j_{5} & \bar{s}_{2} \\
j_{7} & j_{9} & j_{8} & \overline{s_{3}} \\
s_{4} & s_{6} & s_{5}
\end{array}\right\}(-1)^{\sigma} \\
& =\left\{\begin{array}{llll}
j_{1} & j_{4} & j_{7} & s_{4} \\
j_{2} & j_{5} & j_{8} & s_{5} \\
j_{3} & j_{6} & j_{9} & s_{6} \\
s_{1} & s_{2} & s_{3}
\end{array}\right\}=\left\{\begin{array}{llll}
\overline{j_{1}} & \overline{j_{2}} & \overline{j_{3}} & \overline{s_{1}} \\
\overline{j_{4}} & \overline{j_{5}} & \overline{j_{6}} & \overline{s_{2}} \\
\overline{j_{7}} & \overline{j_{8}} & \overline{j_{9}} & \overline{s_{3}} \\
\overline{s_{4}} & \overline{s_{5}} & \overline{s_{6}}
\end{array}\right\} . \tag{5.2}
\end{align*}
$$

In the same way as in the $\mathrm{SU}(2)$ case one can show that the s-classified $9 j$-symbols are expressible in terms of the s-classified $6 j$-symbols (cf в (10.3)):
$\left\{\begin{array}{llll}j_{1} & j_{2} & j_{3} & s_{1} \\ j_{4} & j_{5} & j_{6} & s_{2} \\ j_{7} & j_{8} & j_{9} & s_{3} \\ s_{4} & s_{5} & s_{6}\end{array}\right\}=\sum_{j s s^{\prime} s^{\prime \prime}}|j|\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ \overline{j_{6}} & j_{9} & j \\ s_{1} & \bar{s} & s^{\prime} \\ \bar{s}_{6}\end{array}\right\}\left\{\begin{array}{cccc}j_{4} & j_{5} & j_{6} & \\ j_{2} & j & \overline{j_{8}} & \\ s_{2} & s^{\prime \prime} & \bar{s}_{5} & \bar{s}^{\prime}\end{array}\right\}\left\{\begin{array}{cccc}j_{7} & j_{8} & j_{9} & \\ j & \overline{j_{1}} & j_{4} & \\ s_{3} & \overline{s_{4}} & \bar{s}^{\prime \prime} & s\end{array}\right\}$
and that they satisfy the orthogonality relations

$$
\sum_{\substack{j_{j} j_{8} \\
s_{3} s_{5}}}\left|j_{7} \| j_{8}\right|\left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \\
j_{4} & j_{5} & j_{6} & s_{2} \\
j_{7} & j_{8} & j_{9} & s_{3} \\
s_{4} & s_{5} & s_{6}
\end{array}\right\}\left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3}^{\prime} & s_{1}^{\prime} \\
j_{4} & j_{5} & j_{6}^{\prime} & s_{2}^{\prime} \\
j_{7} & j_{8} & j_{9} & s_{3} \\
s_{4} & s_{5} & s_{6}^{\prime}
\end{array}\right\}=\delta_{j_{3} j_{3}} \delta_{j_{6} j_{6}} \delta_{s_{1} s_{1} \delta_{s_{2}} \delta_{2}} \delta_{s_{5} s_{6}}\left(\left|j_{3} \| j_{6}\right|\right)^{-1}
$$

and fulfil the sum rules
$\sum_{\substack{j^{\prime} \\ s s^{\prime \prime}}}(-1)^{j^{\prime \prime}+j_{6}+j_{8}\left|j \| j^{\prime}\right|}\left\{\begin{array}{cccc}j_{1} & j_{2} & j_{3} & s_{1} \\ j_{5} & j_{4} & j_{6} & \bar{s}_{2} \\ j & j^{\prime} & j_{9} & s^{\prime \prime} \\ s & \bar{s}^{\prime} & s_{6}\end{array}\right\}\left\{\begin{array}{llll}j_{1} & j_{5} & j & s \\ j_{4} & j_{2} & j^{\prime} & s^{\prime} \\ j_{7} & j_{8} & j_{9} & s_{3} \\ s_{4} & \bar{s}_{5} & s^{\prime \prime}\end{array}\right\}=\left\{\begin{array}{llll}j_{1} & j_{2} & j_{3} & s_{1} \\ j_{4} & j_{5} & j_{6} & s_{2} \\ j_{7} & j_{8} & j_{9} & s_{3} \\ s_{4} & s_{5} & s_{6}\end{array}\right\}$.
For one of the j arguments vanishing, the $9 j$-symbol reduces to a $6 j$-symbol up to a factor; if, for example, $j_{9}=0$ (and, necessarily, $j_{6}=\bar{j}_{3}, j_{8}=\bar{j}_{7}, s_{3}=2 f_{3}\left(j_{7}\right)$ and $s_{6}=2 f_{3}\left(j_{3}\right)$), then

$$
\left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3} & s_{1} \tag{5.4}\\
j_{4} & j_{5} & j_{6} & s_{2} \\
j_{7} & j_{8} & 0 & s_{3} \\
s_{4} & s_{5} & s_{6}
\end{array}\right\}=\frac{(-1)^{j_{2}+j_{3}+j_{4}+j_{7}}}{\left(\left|j_{3} \| j_{7}\right|\right)^{1 / 2}}\left\{\begin{array}{llll}
j_{1} & j_{2} & j_{3} & \\
j_{5} & \tilde{j}_{4} & j_{7} & \\
s_{1} & \bar{s}_{4} & s_{5} & \bar{s}_{2}
\end{array}\right\}
$$

The s-classified $\operatorname{SU}(3) 9 j$-symbols and the recoupling coefficients linking different s-classified reduced states of products of four $\mathrm{SU}(3)$ IRs are related by the formula
$\left\langle\left(\left(j_{1} j_{2}\right) j_{12}\left(j_{3} j_{4}\right) j_{34}\right) j m s_{12} s_{34} s \mid\left(\left(j_{1} j_{3}\right) j_{13}\left(j_{2} j_{4}\right) j_{24}\right) j m s_{13} s_{24} s^{\prime}\right\rangle$

$$
=\left(\left|j_{12}\left\|j_{34}\right\| j_{13} \| j_{24}\right|\right)^{1 / 2}\left\{\begin{array}{cccc}
j_{1} & j_{2} & \bar{j}_{12} & s_{12} \tag{5.5}\\
j_{3} & j_{4} & \overline{j_{34}} & s_{34} \\
\bar{j}_{13} & \bar{j}_{24} & j & \bar{s}^{\prime} \\
s_{13} & s_{24} & \bar{s} &
\end{array}\right\} .
$$

The question of possible higher $3 n j$ symmetries (cf Regge 1958, 1959) requires a special investigation.

Acknowledgments

One of us (ZP) acknowledges the kind hospitality extended to him at the Institute of Theoretical Physics in Braunschweig.

References

Butler P H 1975 Phil. Trans. R. Soc. 277545
Derome J-R 1966 J. Math. Phys. 7612
_- 1967 J. Math. Phys. 8714
Derome J-R and Sharp W T 1965 J. Math. Phys. 61584
Draayer J P and Akiyama Y 1973 J. Math. Phys. 141904
Millener D J 1978 J. Math. Phys. 191513
Pluhař Z, Smirnov Yu F and Tolstoy V N 1985 J. Phys. A: Math. Gen. 18
Regge T 1958 Nuovo Cimento 10544

- 1959 Nuovo Cimento 11116

